Sticks

Collect a number of sticks. The investigation is to find the maximum number of intersections as the sticks cross.

With one stick, no sticks cross.

With 2 sticks, there is one intersection.

With 3 sticks, how many intersections are there? \qquad
Record the maximum number of intersections for each number of sticks.

Number of sticks	Number of intersections
1	0
2	1
3	

Can you spot the pattern?
\qquad
\qquad

Can you explain the reason for the pattern?
\qquad
\qquad
Predict the next number of intersections and test your idea.

Answers

Number of sticks	Number of intersections
1	0
2	1
3	3
4	6
5	10
6	21
7	36
8	

The number of intersections are triangular numbers. Each new stick intersects all the others. This means the $9^{\text {th }}$ stick will intersect all the other 8 , adding 8 intersections.

