## Routes

Find the different shortest routes from point $A$ to each other letter. Routes must be on the lines in a horizontal or vertical direction.

|  |  |  |  |
| :---: | :---: | :---: | :--- |
| I | H | G |  |
| C | D | F |  |
| A | B | E |  |

Record your results in the table below.

| Journey | Number of routes | Different routes |
| :--- | :--- | :--- |
| $A B$ | 1 | $A B$ |
| $A C$ |  |  |
| $A D$ |  |  |
| $A E$ |  |  |
| $A F$ | 3 | $A C D F, A B D F, A B E F$ |
| $A I$ |  |  |
| $A H$ |  |  |
| $A G$ |  |  |

Can you spot any patterns?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Challenge

Add another set of letters in the row above the columns and to the right and investigate the number of routes.

Try routes on isometric paper.

## Routes

$\qquad$
$\square$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\square$
$\qquad$
$\qquad$
$\square$





 $\bullet \cdot 0_{0}$









## Answers

| Journey | Number of routes | Different routes |
| :--- | :--- | :--- |
| $A B$ | 1 | $A B$ |
| $A C$ | 1 | $A C$ |
| $A D$ | 2 | $A B D, A C D$ |
| $A E$ | 1 | $A B E$ |
| $A F$ | 3 | $A C D F, A B D F, A B E F$ |
| $A I$ | 1 | $A C I$ |
| $A H$ | 3 | $A B D H, A C D H, A C I H$ |
| $A G$ | 6 | $A B E F G, A B D F G, A B D H G, A C I H G, A C D H G, A C D F G$ |

